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a  b  s  t  r  a  c  t

The  optimum  charge  rate  for a lithium  ion  cell  at each  cycle  is  determined  to maximize  the useful life of
the  cell  without  using  optimization  algorithms.  In  previous  work,  we  showed  that  by applying  a dynamic
optimization  routine  the  number  of  cycles  can  be increased  by approximately  29.4%  with  respect  to  the
case  with  one  optimal  charge  current  [7]. The  dynamic  optimization  results  indicated  that  the  optimum
charge  rates  are  the  minimum  currents  at which  the  constraints  for the  useful  life  are  satisfied.  This  is  due
eywords:
ithium-ion cell
ell life
ptimal charge rates

to the minimum  charge  rate  resulting  in minimum  side  reaction  rate  and capacity  fade.  Useful  cell life  is
defined  as  the  number  of cycles  before  the  end  of  discharge  voltage  (EODV)  drops  below  3.0  V or  the  cell
discharge capacity  becomes  less  than  20%  of  the original  discharge  capacity.  The  new approach  presented
in this  work  is  able  to  find  the  optimal  charge  rates  in  a  few  minutes  while  the  previous  optimization
algorithm  takes  at least  one  day,  and  improves  the  useful  cell  life  by  approximately  41.6%  with  respect
to  using  only  one  optimal  charge  current.
. Introduction

Finding the optimal charge rates to maximize useful life of Li-
on cells is an important issue. The capacity of the Li-ion batteries
ecreases with the number of charge–discharge cycles due to unde-
irable side reactions. Since these batteries are used for tens to
housands cycles, depending on application, there is a demand to
eek the best operating conditions to improve the cycling perfor-
ance to minimize the capacity fade, and thereby increasing cell

ife. Some work has studied the effect of cycling conditions such
s the end of charge voltage (EOCV), depth of discharge (DOD)
nd charging rate on capacity fade and cell life [1–3]. However,
nly a few studies have attempted to optimize the charge rates
or battery longevity using optimization or heuristic algorithms.

ethekar et al. applied the sequential dynamic optimization to
nd the optimal profile of charging current for a Li-ion battery
4]. They showed that if the battery is charged using the opti-

um  profile estimated by dynamic optimization, more energy can
e stored as compared with conventional charging protocol. In a
imilar work, Wang applied Optimal Control Theory techniques
o maximize the efficiency of the battery charging process which
s defined as the ratio of the energy accumulated in the battery

ver the actual energy supplied it [5].  However, these studies did
ot deal with the useful cell life. Recently, Bashash et al. used
ultiobjective genetic algorithm to obtain the charge pattern of
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a plug-in hybrid electric vehicle to simultaneously minimize the
total cost of fuel and electricity and the battery life degradation.
The results showed that the two  objectives are conflicting and
as a result a Pareto front of optimal charge patterns was formed
[6].

We recently published a paper [7] in which the useful life
of a lithium ion cell was  maximized by optimization of charge
currents, as a function of cycle number during cycling. The max-
imum number of charge rates used was twenty currents that
were equally spaced in cycle numbers that improved the cell life
by ∼30% with respect to the case with single charge rate used.
To obtain the optimal currents, Matlab’s Genetic Algorithm and
Direct Search Toolbox was used to solve the NLP (Nonlinear Pro-
gramming) resulting from the sequential dynamic optimization
method. Choosing twenty rates, the optimization needs to eval-
uate the objective function (number of cycles) more than 80,000
times and if the objective function evaluation takes only 1 s, at the
best condition, it will take about one day to find the optimal pro-
file. Moreover, only twenty optimal charge rates (the optimization
was stopped at twenty decision variables because there was  no
enhancement of the objective function with respect to the case
with ten decision variables) were found where each of them is
applied for a number of cycles (the total number of cycles divided
by twenty). Thus, it is not possible to find the optimal charge
current at each cycle, unless the number of decision variables
(charge rates) for optimization reaches the number of cycles. In

this paper a new approach, shown in Fig. 1, is presented to find the
best charge rate at each cycle that improves the useful life 10%
more than the dynamic optimization in much less computation
time.

dx.doi.org/10.1016/j.jpowsour.2011.07.019
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:white@cec.sc.edu
dx.doi.org/10.1016/j.jpowsour.2011.07.019
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Fig. 1. The new approach flowchart 

. Lithium-ion cell simulation

A single particle (SP) physics based model, which includes
apacity fade, was applied to simulate the cell perfor-
ance under low-earth-orbit (LEO) cycling conditions [7].

he main assumptions associated with the SP model are as
ollows:
The concentration of the electrolyte and the potential in the solu-
tion phase is constant and uniform for all time across the cell
sandwich (cathode, separator, anode).
e refer to Section 4 for explanation).

• Positive and negative electrode potentials depend on time only.
• The model considers the capacity fade by a continuous occurrence

of a side reaction (reduction of ethylene carbonate) only during
the charge near the surface of the negative electrode. Moreover,
the state of the charge (SOC) of the positive electrode is dimin-
ished during cycling.

• The concentration of Li ions in the spherical particle is estimated

using a two term polynomial approximation.

The mathematical formulation of the SP model is briefly restated
here. More details can be found in our previous work [7].  A volume
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Nomenclature

ce electrolyte concentration (mol cm−3)
ci,max maximum solid phase for each electrode (i = p,n)

(mol cm−3)
Ds,i solid phase diffusion coefficient of Li+ for each elec-

trode (i = p, n) (cm2 s−1)
F Faraday’s constant (C mol−1)
I current (C-rate)
Iapp applied current (A)
IL minimum allowed rate (C-rate)
IU maximum allowed rate (C-rate)
i0f exchange current density for the film formation

reaction (A cm−2)
Ji the current density to each electrode (i = p, n)

(A cm−2)
Js side reaction rate (A cm−2)
kf film specific conductivity (S cm−1)
ki rate constant for each electrode (i = p, n)

(A cm2.5 mol−1.5)
Mf molecular weight of film (g mol−1)
Ncycle total number of cycles
Q0 initial cell capacity (Ah)
Qdis discharge capacity (Ah)
Qmax maximum capacity of the cell (Ah)
Qcell cell capacity at each cycle (Ah)
Qp charge capacity (Ah)
QS capacity loss (Ah)
Qt total original discharge capacity (Ah)
R gas constant (J mol−1 K−1)
Rfilm film resistance (� cm2)
Ri particle radius for each electrode (i = p, n) (cm)
RSEI resistance of the Solid Electrolyte Interphase layer

(� cm2)
Si electroactive surface area for each electrode (i = p, n)

(cm2)
T temperature (K)
tol specific tolerance (e.g. = 1e−6)
U�

i
open circuit potentials for each electrode (i = p, n)
(V)

Uref,f open circuit potential for film formation reaction (V)
xi,avg ratio of the solid average concentration to the max-

imum solid concentration for each electrode (i = p,
n)

xi,surf ratio of the solid surface concentration to the max-
imum solid concentration for each electrode (i = p,
n)

˛a,i cathodic transfer coefficient
˛c,i anodic transfer coefficient
˛c,f cathodic transfer coefficient for the film formation

reaction
ıfilm film thickness (cm)
�i overpotentials for the lithium ion intercalation reac-

tion for each electrode (i = p, n) (V)
�s side reaction over potential (V)
�1 loss of SOC
�f film density (g cm−3)

a
i

�i potential for each electrode (i = p, n) (V)

verage technique is applied to predict the diffusion of the lithium

ons for the cathode (LiCoO2 with no Ni) and the carbon anode:

dxp,avg

dt
= −3Jp

FRpcp,max
ources 196 (2011) 10297– 10304 10299

xp,surf − xp,avg = −JpRp

5FDs,pcp,max

Jp = Iapp

Sp

dxn,avg

dt
= −3Jn

FRncn,max

xn,surf − xn,avg = −JnRn

5FDs,ncn,max

Jn = −Iapp

Sn
− Js

where xi,avg is the ratio of the solid average concentration to the
maximum solid concentration for each electrode (ci,max), xi,surf is
the ratio of the solid surface concentration to the maximum solid
concentration. Js, the side reaction rate is calculated by using Tafel
kinetics:⎧⎨
⎩

Js = −i0f exp

(
−˛c,f F

RT
�s

)
[charge]

Js = 0 [discharge]

�s = �n − Uref,f − Iapp

Sn
Rfilm

Rfilm is defined as:

Rfilm = RSEI + ıfilm

kf

and the rate at which the film thickness increases is calculated by:

dıfilm

dt
= −JsMf

�f F

The Butler–Volmer kinetic expression is used to predict the rates
of the lithium ion deintercalation and intercalation reactions for
each electrode:

Ji = ki(ci,max − xi,surf ci,max)0.5(xi,surf ci,max)0.5c0.5
e

×
[

exp

(
˛a,iF

RT
�i

)
− exp

(
−˛c,iF

RT
�i

)]

The overpotentials for the lithium ion intercalation reaction for
the anode and cathode are given as:

�p = �p − U�
p

�n = �n − U�
n ∓ Iapp

Sn
Rfilm

({
−charge
+discharge

})

The SOC of the positive electrode updated at the end of each
charging process as follows:

�p,N = �p,N−1 − �1,N−1

where �1 is the loss of SOC obtained by dividing the capacity loss
to the maximum capacity of the cell (subscript N − 1 indicates the

previous cycle):

�1 = QS

Qmax
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obtained by using single charge current is 238 and the optimum
current is 0.4055 C-rate. Using twenty charge currents increases
ig. 2. Remaining cell capacity at the end of discharge versus cycle number for single
nd 20 charge currents [7].

s = −
∫ t=charge time

0

(JsSn)dt

max =
∫ t=charge time

0

Iappdt (first cycle)

The cell capacity at each cycle is obtained as follows:

Cell = Q0 +
Ncycle∑
i=2

(Qp(i) − Qdis(i))

here Q0, Qp and Qdis are the initial cell capacity, the charge capacity
nd discharge capacity, respectively.

LEO cycling [3],  which contains the following steps, was  applied
or the cell simulation after the cell is completely charged initially:

1) Constant current discharge (0.6857 C-rate (40% DOD)) for
35 min  discharge time. Unless the voltage drops below 3.0 V or
the cell capacity reaches the 20% of the total discharge capacity,
go to step 2.

2) Constant current charging (up to 1 C rate) for 61 min  charge
time. If the voltage reaches the EOCV (4.05 V), go to step 3, if
not go to step 1.

3) Constant voltage (4.05 V) charging for the remaining charge
time, go to step 1.

. Dynamic optimization results

To apply the dynamic optimization, the number of cycles
btained for one optimal charge rate is rounded up to 320 [7].
hen a constant charge rate was used for each subdomain which is
btained by dividing the assumed total number of cycles (320) by

 equally spaced cycle number. MATLAB® Genetic Algorithm and
irect Search Toolbox [8] were used to find the optimal charge rates
s follows. First, direct search approach was applied to increase the
bjective function rapidly. Then the resulting point was  considered
s one of the children for the initial population in the genetic algo-
ithm. If the objective function was improved by the genetic, the
rocedure is repeated; otherwise the optimization algorithm stops
7].
To compare the results of the dynamic optimization and the new
ethod, the best profile obtained by the optimization using single

harge rate and twenty charge rates are presented in this work as
ell as [7].  Figs. 2–4 show the variation of the cell capacity, the end
Fig. 3. EODV versus cycle number for single charge and 20 charge currents [7].

of charge voltage (EODV) and the end of discharge voltage (EOCV)
respectively as a function of cycle number for single and twenty
charge rates. Because the optimal charge rate during cycling for
the case with twenty currents (black dotted line) is below the opti-
mum single (gray dotted line), the cell capacity for twenty charge
rates (black solid line) decreases more rapidly than the cell capac-
ity for single charge rate until it reaches the minimum allowed cell
capacity (dashed line) at cycle 60, as shown in Fig. 2. As a result next
rate is increased as to not violate the capacity constraint. However,
the new rate is still below the optimal single rate up to cycle 260 to
reduce the side reaction rate and capacity fade and consequently to
enhance the useful cell life. After cycle 260, the capacity constraint
makes the charge rate increase above the optimal single rate and
finally the EODV constrain determines the number of cycles, as pre-
sented in Fig. 3. While the EOCV is constant at 4.05 V for the case
with single rate, the EOCV for the case with twenty rates decreases
gradually to 3.985 V during the first 60 cycle and after that increases
to 4.046 V up to cycle 260 and finally becomes constant at 4.05 V
for the remaining cycles, as shown in Fig. 4. The EOCV variation
during cycling can be described that no constraints were used in
the optimization algorithm to keep the EOCV constant and the low
charge rates causes the EOCV decreases. The total number of cycles
Fig. 4. EOCV versus cycle number for single charge and 20 charge currents [7].
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Fig. 5. Remaining cell capacity at the end of discharge and EODV versus charge rate
for  the first and second cycles.

Fig. 6. Remaining cell capacity at the end of discharge and charge rate versus cycle
number obtained by new approach with and without EOCV constraint.
S.K. Rahimian et al. / Journal of P

he number of cycles to 309, 29.4% increase with respect to one
ptimum current.

. New approach

The optimization results from prior work [7] indicate that the
est charge current is the minimum rate at which, the cell capac-

ty constraint (>20% of the total discharge capacity) and the EODV
onstraint (>3.0) are not violated. Thus, finding the optimal charge
ate at each cycle by seeking a charge current where the cell capac-
ty and the EODV constraints are not violated without using any
ptimization algorithm appears to be possible. The new proposed
rocedure, shown in Fig. 1, is as follows (the cell is initially fully
harged):

(1) Discharge the cell for 35 min  with 40% depth of discharge
(DOD).

(2) Set the minimum rate at 0.001 C-rate and the maximum rate
at 1.0 C-rate

(3) Choose an initial guess for the charge rate between the
minimum (e.g. 0.001 C-rate) and maximum (e.g. 1.0 C-rate)
allowed rates (e.g.0.5 C-rate)

(4) Constant Current Charge for 61 min. If the EOCV reaches 4.05 V
go to step 5, otherwise go to step 6.

(5) Constant Voltage Charge for the remaining charge time.
(6) Discharge the cell for 35 min  with 40% DOD and calculate the

cell capacity and the EODV.
(7) If one of the constraints is violated, set the minimum rate as

the current charge rate and the next current as the half of the
sum of current rate and the maximum rate. Otherwise, set the
maximum rate as the current rate and the next current as half
of the sum of the current rate and the minimum rate.

(8) Repeat steps 4–7 until the difference between the current rate
and the minimum rate or maximum rate becomes less than a
specific tolerance (e.g., tol = 1e−6).

(9) Set all the dependent variables (e.g. the solid average concen-
trations, the solid surface concentration, electrode potentials,
etc.) of the current cycle as the initial condition for the next
cycle.

10) Repeat steps 2–9 until the charge rate reaches the maximum
rate.

. Results and discussion

It is worthwhile to show how the cell capacity and the EODV vary
ith the charge rate for the first and the second cycle. Fig. 5 presents

he cell capacity and the EODV as a function of the charge rate for the
rst and second cycle. The results in Fig. 5 indicate the cell capac-

ty and the EODV at the minimum rate are 0.435 Ah and 3.762 V,
espectively, which are greater than their minimum allowed values
minimum capacity = 0.268 Ah, minimum EODV = 3.0 V). Thus, the
ew approach gives the minimum charge rate as the best rate for
he first cycle. For second cycle, choosing the minimum rate violates
he cell capacity constraint, consequently it is necessary to increase
he charge current. The minimum rate at which the cell capacity
s greater than the minimum allowed cell capacity obtained by
he optimization method is 0.272 C-rate. By following the above
rocedure, the optimal charge rate profile is obtained during the
ycling. The optimal charge rate and the cell capacity as a function
f the cycle number obtained by the new approach that improves
he number of cycles to 337, 41.6% increase with respect to one

ptimal charge rate, shown in Fig. 6. Variation of the EODV and the
OCV with the cycle number is presented in Fig. 7. During the cycles
–310 the cell capacity constraint determines the optimal value
f the charge rate. However, since the EODV would drop below

Fig. 7. EODV (black) and EOCV (gray) versus cycle number obtained by new
approach with and without EOCV constraint.
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for the initial population. At each generation six objective function
evaluations were done simultaneously using the Parallel Comput-
ing Toolbox. Since the genetic algorithm was  not able to improve
the objective function after the stall generations limit (was set 20),
ig. 8. Cell capacity loss during charge versus cycle number by new approach with
nd without EOCV constraint.

ts minimum allowed value if the same current at cycle 310 was
pplied for the next cycle, the charge rate increases to satisfy the
ODV constraint. The increase in current continues until the current
eaches the upper bound value (1 C-rate) which results in growth
f the reserved cell capacity after cycle 310 until the cell dies as
llustrated in Fig. 6. Since no constraint was used to keep the EOCV
onstant during cycling, the voltage dropped below 4.05 V at the
nd of charge as indicated in Fig. 7. However, the EOCV constraint
an be included in the algorithm without any difficulties. Adding
he constraint that keeps the EOCV greater than 4.0 V (*constraint
n Fig. 1), decreases the number of cycles to 317, a 33.2% increase

ith respect to one optimal charge rate. This is due to increase in
harge rate in some cycles to not allow the EOCV dropping below
he constraint. In this case the number of cycles is still greater than
he dynamic optimization result while in dynamic optimization the
OCV drops below 4.0 V as observed in Fig. 4. The optimal charge
ate and the cell capacity for this case are depicted in Fig. 6 while
he EODV and the EOCV are shown in Fig. 7. As can be seen, between
ycles two and 120 the charge rate is determined by the EOCV con-
traint and between cycles 121 and 291 by the capacity constraint.
or the remaining cycles, the EODV dictates the optimal value of
he charge current. Fig. 6 also indicates that the charge rate for the
ase with EOCV constraint is much greater (0.1133 C-rate) at cycle

 and less (0.0004 C-rate in average) than the charge rate for the
ase with no EOCV constraint for the next 289 cycles. This causes
ore capacity loss for the case with EOCV constraint as shown in

ig. 8.
The computation time for the new approach is 228 s on a Dell

recision T7500, with 2 Quad Core 2.53 GHz Zenon Processors CPUs
nd 12.285 GB of RAM, the same machine used in our previous
ork.

The percent increase in number of cycles with respect to the case
ith one charge current for dynamic optimization using different
umber of charge rates and the new approach is shown in Fig. 9.
ote that improvement of the objective function is not a monotonic

unction of the number of charge currents. A monotonic increase
n the number of cycles would occur if the number of cycles were
ivided by the same initial number (e.g. 2, 4, 8,. . . or 5, 10, 20,.  . .).

In the previous work [7] the exchange current density was set
o 1.0e−10 A cm−2 to exaggerate the side reaction rate to decrease
he cell life and their computation time by reducing the number

f cycles that must be simulated to achieve end of life. To com-
are the new approach with the dynamic optimization for more
ractical condition, the previous Li-ion cell model was  applied with
Fig. 9. %Increase in number of cycles respect to the case with one charge current.

the exchange current density for the film formation reaction equal
to 2.5e−12 A cm−2 [3]. Variation of the number of cycles with one
charge rate is shown in Fig. 10 which indicates the number of cycles
reaches to 16,122 cycles at the best charge rate, 0.4 C-rate. Fig. 10
also shows the stiffness of the objective function near the opti-
mal  point that restricts the use of deterministic (gradient based)
optimization routines. This is the reason nondeterministic meth-
ods including the genetic and the pattern search algorithms were
applied in prior work [7]. However, the computation time for these
methods is much greater than the deterministic optimization rou-
tines. The new approach, presented in this paper, deals with the
computation time difficulties while improving the objective func-
tion (cell useful life) more than the previous optimization method.

To compare the computation time, the dynamic optimization
was applied to obtain the optimum single charge current by using
0.5 C-rate as the initial point for the pattern search algorithm that
converged to the optimum point in 25 iterations. MATLAB® Paral-
lel Computing Toolbox was applied every iteration to evaluate the
objective function twice simultaneously except for the first itera-
tion where only one evaluation was performed. Then, the genetic
algorithm used the pattern search result as one of the 20 children
Fig. 10. Variation of the number of cycles with one charge rate for the practical case.
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Table  1
Comparison between the new approach and the dynamic optimization for the practical case.

Method Number of cycles %Increasea Number of CPU cores used Computation time (h) Computation time per one CPU core (h)

Dynamic optimization (N = 1) 16,122 0 6 43.66 217.13
Dynamic optimization (N = 2) 16,631 3.16 6 81.58 444.63
Dynamic optimization (N = 4) 17,839 10.65 6 419.68 2512.4
New  approach 20,027 24.22 1 7.26 7.26

a In number of cycles with respect to the case with one charge current.
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Although the new approach in this work was  used to find the
ig. 11. Remaining cell capacity at the end of discharge, charge rate and EODV versus
ycle number obtained by new approach for the practical case.

he optimization algorithm stopped. The total computation time
or finding the best single charge rate took about 43.66 h (approxi-

ately 217.13 h if the PC had run only one CPU core). The dynamic
ptimization algorithm was also used to obtain the two and four
ptimal charge rates and the results are presented in Table 1.

Finally, the new approach was also used to predict the optimum
harge rate during cycling for the practical case. Fig. 11 presents the
ell capacity, the charge rate and the EODV versus cycle number
btained by the new method. The results shown in Fig. 11 indicate
hat the new approach improved the number of cycles to 20,027,

 24.22% increase with respect to the case with single optimum
harge rate. Fig. 11 also indicates that the optimal charge current is
nly determined by the cell capacity constraint and the EODV never
eaches to the minimum value at 3.0 V. To illustrate how the new
pproach improves the cell useful life with respect to the case with
ingle optimal charge rate, the cell capacity loss during charge (the
odel assumes no capacity loss during discharge) as a function of

ycle number is shown in Fig. 12.  As can be seen, the capacity loss
or the single optimal rate is more than the new approach capacity
oss up to cycle 11,615, about 72% of the total number of cycles for
he single rate, that makes the cell dies more rapidly.

The computation time was about 7.26 h, about 17% of the time
equired for dynamic optimization, where only one CPU core was
nvolved. Table 1 compares the new approach improvement and
he computation time with respect to the dynamic optimization.

The advantages of the new method with respect to the dynamic
ptimization algorithm [7] are as follows:

1) The new method finds the optimal charge rate at each cycle;
while the optimization seeks the best charge current for certain

number of cycles (total number of cycles divided by number of
decision variables). Thus, the useful life of the cell is improved
more than the optimization by this method (more than 10%).
Fig. 12. Cell capacity loss during charge versus cycle number using single optimal
charge rate and new approach for the practical case.

(2) The computation time is greatly reduced by this approach. It
takes a few hours while the optimization algorithm with 4 num-
ber of charge rates takes more than 15 days, Table 1. Also there
is no guarantee that the optimization finds the global optimum.

(3) To use the optimization algorithm for online applications, it
is required to predict the entire useful cell life based on prior
cycling data. The new method only requires the prediction of
the next cycle by using prior cycling data. Thus, the result of the
new approach depends only on the next cycle prediction while
the optimization results rely on the cell life prediction.

(4) The number of decision variable in the new method is one (cur-
rent cycle charge rate) and the constraints are evaluated for one
cycle. While the number of decision variables in the optimiza-
tion algorithm can be much greater and the objective function
and constrains are evaluated for the total cell life.

(5) The new approach gives the global optimum of the optimiza-
tion method when the number of decision variables limits to the
number of cycles. To verify this claim, the optimal charge rates
attained by the new technique are set as the initial guess for
the dynamic optimization. The optimization algorithm was  not
able to improve the cell useful life after approximately one mil-
lion function evaluations; as a result the new approach charge
currents are likely the optimal profile.

(6) The new approach allows us for use of more any rigorous mod-
els (e.g. Pseudo two  dimensional [9]) for on-line applications
without prohibitively the computation time to find the best
charge rates.
optimal charge current for a lithium ion cell with LEO cycling, it can
be applied for other battery design, cycling protocol, lithium ion
chemistries, rechargeable batteries, etc. The proposed algorithm
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ssumes that the capacity fade, the cell capacity and the EODV
ncrease as the charge rate increases. Thus the optimal charge cur-
ent is the minimum rate at which the capacity fade is minimized
hile the cell capacity and EODV constraints are met.

. Conclusion

A new approach was developed to provide the optimal charge
ates to maximize the useful life of a Lithium-ion cell without using
ptimization framework. The best charge current is determined
s the minimum rate where all the cell life constraints are satis-
ed. During the useful cell life the cell capacity and the EODV are
equired to be greater than their minimum allowed values. The cell
apacity and the EODV are both a monotonic ascending function of
he charge current; as a result the optimal charge current can be
btained by some iterations of the charge–discharge processes for
ach cycle. The new method improves the predicted cell life in a few

inutes by ∼42% with respect to the case when only one optimal

harge rate is used during the useful life, while the dynamic opti-
ization is able to increase the predicted number of cycles by ∼30%

n more than one day at best conditions. Thus, the new technique

[

[
[

ources 196 (2011) 10297– 10304

enables us to find the best charge profile in online application in
reasonable computation time by using any rigorous model for the
cell simulation.
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